4D motility tracking of biological cells by digital holographic microscopy

Xiao Yu and Myung K. Kim

Digital Holography and Microscopy Laboratory University of South Florida Tampa, FL

xyu4@mail.usf.edu

Frontiers In Optics 2013, Orlando, FL Oct 8, 2013

≻Outline

Motivation & introduction

- Motility of biological cells
- Digital holographic microscopy (DHM)
- DHM setup
- Applications on 4D cellular motility tracking

Conclusion

≻Motivation

Motility of biological cells

Digital holographic microscopy (DHM)

Cellular & Intracellular

Quantitative phase microscopy by digital holography (DH-QPM)

> Introduction

≻DHM setup

M's: mirrors; BS's: beam splitters; MO's: microscope objectives; S: sample object

≻3D profiles of suspended microspheres

Hologram

Amplitude

FOV 90 \times 90 μ m² with 464 \times 464 pixels

All-in-focus intensity profile Depth position profile

≻3D profiles of microspheres

 $90 \times 90 \times 200 \ \mu m^3$

microsphere		1	2	3	4	5	6	7	8	9	
centroid	x(µm)	57	53	23	10	34	81	7	51	13	
	y(µm)	22	35	39	45	47	60	67	68	70	
	z(µm)	20	-4	-2	-3	60	14	-6	51	-2	
	Intensity($\times 10^3$)	1.97	2.16	2.01	1.81	1.91	2.23	1.49	1.74	1.93	

≻3D profiles of curved microfibers

All-in-focus intensity profile Depth position profile

 $90 \times 90 \ \mu m^2$ with 464×464 pixels

≻3D profiles of curved microfibers

> 4D motility tracking of chilomonas

(H1-H2)+(H3-H4)+...+(H13-H14) Amplitude

30fps

All-in-focus intensity profile

FOV 90 \times 90 μ m² with 464 \times 464 pixels

> 4D motility tracking of chilomonas

> 3D displacement of microfiber by paramecium

Digital Holography & Microscopy Laboratory

USF

> 3D displacement of microfiber by paramecium

Conclusion

4D motility tracking of biological cells by DHM

- Simplicity of apparatus
- Simplicity of sample preparation
- Reduction in time and data amount
- 3D distribution and moving trajectory in real-time
 - particles, living cells and fibers
 - size (few to hundred micrometer)
 - conditions (static, suspended and swim-through)
- DHM is shown to be an effective approach to study motility of biological cells with temporal and spatial resolution at the subsecond and micrometer level.

> Future work

3D adhesive cells & microfiber jungle interaction

- Traction force of fibroblasts
- Physical properties (stiffness) of microfibers

3D morphology change of biological cells based on phase profiles

Thank you!

